Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(738): eadi0979, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478629

RESUMO

Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more efficiently than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to those of NTV. A crucial feature of ML2006a4 is a derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Last, ML2006a4 was found to be less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory design can preemptively address potential resistance mechanisms to expand future treatment options against coronavirus variants.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Humanos , SARS-CoV-2 , Mutação/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
2.
Adv Sci (Weinh) ; 10(17): e2206521, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092580

RESUMO

The highly conserved matrix protein 2 ectodomain (M2e) of influenza viruses presents a compelling vaccine antigen candidate for stemming the pandemic threat of the mutation-prone pathogen, yet the low immunogenicity of the diminutive M2e peptide renders vaccine development challenging. A highly potent M2e nanoshell vaccine that confers broad and durable influenza protectivity under a single vaccination is shown. Prepared via asymmetric ionic stabilization for nanoscopic curvature formation, polymeric nanoshells co-encapsulating high densities of M2e peptides and stimulator of interferon genes (STING) agonists are prepared. Robust and long-lasting protectivity against heterotypic influenza viruses is achieved with a single administration of the M2e nanoshells in mice. Mechanistically, molecular adjuvancy by the STING agonist and nanoshell-mediated prolongation of M2e antigen exposure in the lymph node follicles synergistically contribute to the heightened anti-M2e humoral responses. STING agonist-triggered T cell helper functions and extended residence of M2e peptides in the follicular dendritic cell network provide a favorable microenvironment that induces Th1-biased antibody production against the diminutive antigen. These findings highlight a versatile nanoparticulate design that leverages innate immune pathways for enhancing the immunogenicity of weak immunogens. The single-shot nanovaccine further provides a translationally viable platform for pandemic preparedness.


Assuntos
Vacinas contra Influenza , Influenza Humana , Nanoconchas , Camundongos , Animais , Humanos , Vacinação , Antígenos , Peptídeos , Linfonodos
3.
Front Immunol ; 14: 1135815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969239

RESUMO

Licensed COVID-19 vaccines ameliorate viral infection by inducing production of neutralizing antibodies that bind the SARS-CoV-2 Spike protein and inhibit viral cellular entry. However, the clinical effectiveness of these vaccines is transitory as viral variants escape antibody neutralization. Effective vaccines that solely rely upon a T cell response to combat SARS-CoV-2 infection could be transformational because they can utilize highly conserved short pan-variant peptide epitopes, but a mRNA-LNP T cell vaccine has not been shown to provide effective anti-SARS-CoV-2 prophylaxis. Here we show a mRNA-LNP vaccine (MIT-T-COVID) based on highly conserved short peptide epitopes activates CD8+ and CD4+ T cell responses that attenuate morbidity and prevent mortality in HLA-A*02:01 transgenic mice infected with SARS-CoV-2 Beta (B.1.351). We found CD8+ T cells in mice immunized with MIT-T-COVID vaccine significantly increased from 1.1% to 24.0% of total pulmonary nucleated cells prior to and at 7 days post infection (dpi), respectively, indicating dynamic recruitment of circulating specific T cells into the infected lungs. Mice immunized with MIT-T-COVID had 2.8 (2 dpi) and 3.3 (7 dpi) times more lung infiltrating CD8+ T cells than unimmunized mice. Mice immunized with MIT-T-COVID had 17.4 times more lung infiltrating CD4+ T cells than unimmunized mice (7 dpi). The undetectable specific antibody response in MIT-T-COVID-immunized mice demonstrates specific T cell responses alone can effectively attenuate the pathogenesis of SARS-CoV-2 infection. Our results suggest further study is merited for pan-variant T cell vaccines, including for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , Camundongos Transgênicos , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Síndrome Pós-COVID-19 Aguda , Anticorpos Neutralizantes , Epitopos , RNA Mensageiro
4.
Vaccines (Basel) ; 10(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36366348

RESUMO

Recombinant proteins are essential in the development of subunit vaccines. In the design of many recombinant proteins, polyhistidine residues are added to the N- or C-termini of target sequences to facilitate purification. However, whether the addition of tag residues influences the immunogenicity of proteins remains unknown. In this study, the tag-free SARS-CoV-2 RBD and His-tag SARS-CoV-2 RBD proteins were investigated to determine whether there were any differences in their receptor binding affinity and immunogenicity. The results showed that the tag-free RBD protein had a higher affinity for binding with hACE2 receptors than His-tag RBD proteins (EC50: 1.78 µM vs. 7.51 µM). On day 21 after primary immunization with the proteins, the serum ELISA titers of immunized mice were measured and found to be 1:1418 for those immunized with tag-free RBD and only 1:2.4 for His-tag RBD. Two weeks after the booster dose, tag-free-RBD-immunized mice demonstrated a significantly higher neutralizing titer of 1:369 compared with 1:7.9 for His-tag-RBD-immunized mice. Furthermore, neutralizing antibodies induced by tag-free RBD persisted for up to 5 months and demonstrated greater cross-neutralization of the SARS-CoV-2 Delta variant. Evidence from Western blotting showed that the serum of His-tag-RBD-immunized mice recognized irrelevant His-tag proteins. Collectively, we conclude that the addition of a polyhistidine tag on a recombinant protein, when used as a COVID-19 vaccine antigen, may significantly impair protein immunogenicity against SARS-CoV-2. Antibody responses induced were clearly more rapid and robust for the tag-free SARS-CoV-2 RBD than the His-tag SARS-CoV-2 RBD. These findings provide important information for the design of antigens used in the development of COVID-19 subunit vaccines.

5.
Appl Microbiol Biotechnol ; 105(11): 4663-4673, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34043078

RESUMO

The recent Zika virus (ZIKV) epidemic poses a serious threat to global health due to its association with microcephaly and congenital diseases in newborns and neurological complications and Guillain-Barré syndrome in adults. However, the majority of people infected with ZIKV do not develop symptoms. The platforms aimed to specifically diagnose ZIKV infection are needed for patient care and public health surveillance. In the study, four ZIKV envelope (E) protein-specific monoclonal antibodies (mAbs) (A1, B1, C1, and 9E-1) have been developed by using the conventional mAb technology. The binding epitopes of mAbs A1, B1, C1, and 9E-1 are located at E(238-257), E(410-431), E(258-277), and E(340-356), respectively. mAb 9E-1 performs 1.4- to 47-fold strong affinity to ZIKV E protein compared to another three mAbs. mAbs A1, C1, and 9E-1 do not have cross-reactivity against the recombinant E proteins of dengue virus serotypes 2, 3, and 4. Although these four mAbs do not have ZIKV neutralizing activity, mAbs B1 and 9E-1 have been developed as the lateral flow immunochromatographic assay for specific detection of ZIKV E protein and virions. KEY POINTS: • The mAbs targeting to the regions of E(238-257), E(410-431), E(258-277), and E(340-356) do not have ZIKV neutralizing activity. • The binding epitope of mAb 9E-1 is highly specific to ZIKV E protein. • mAbs B1 and 9E-1 can bind to ZIKV virions and have been developed as the lateral flow immunochromatographic assay.


Assuntos
Infecção por Zika virus , Zika virus , Adulto , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Recém-Nascido , Camundongos , Envelope Viral , Proteínas do Envelope Viral , Infecção por Zika virus/diagnóstico
6.
Hum Vaccin Immunother ; 17(3): 654-655, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32991231

RESUMO

A safe and effective vaccine candidate is urgently needed for the ongoing COVID-19 pandemic, caused by SARS-CoV-2. Here we report that recombinant SARS-CoV-2 RBD protein immunization in mice is able to elicit a strong antibody response and potent neutralizing capability as measured using live or pseudotyped SARS-CoV-2 neutralization assays.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Ligação Proteica/imunologia , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Pandemias/prevenção & controle , Proteínas Recombinantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Adv Funct Mater ; 29(28): 1807616, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32313544

RESUMO

The continued threat of emerging, highly lethal infectious pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) calls for the development of novel vaccine technology that offers safe and effective prophylactic measures. Here, a novel nanoparticle vaccine is developed to deliver subunit viral antigens and STING agonists in a virus-like fashion. STING agonists are first encapsulated into capsid-like hollow polymeric nanoparticles, which show multiple favorable attributes, including a pH-responsive release profile, prominent local immune activation, and reduced systemic reactogenicity. Upon subsequent antigen conjugation, the nanoparticles carry morphological semblance to native virions and facilitate codelivery of antigens and STING agonists to draining lymph nodes and immune cells for immune potentiation. Nanoparticle vaccine effectiveness is supported by the elicitation of potent neutralization antibody and antigen-specific T cell responses in mice immunized with a MERS-CoV nanoparticle vaccine candidate. Using a MERS-CoV-permissive transgenic mouse model, it is shown that mice immunized with this nanoparticle-based MERS-CoV vaccine are protected against a lethal challenge of MERS-CoV without triggering undesirable eosinophilic immunopathology. Together, the biocompatible hollow nanoparticle described herein provides an excellent strategy for delivering both subunit vaccine candidates and novel adjuvants, enabling accelerated development of effective and safe vaccines against emerging viral pathogens.

8.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077637

RESUMO

Yin Yang 1 (YY1) is a multifunctional zinc finger transcription factor that regulates many key cellular processes. In this study, we report the cloning of YY1 from Litopenaeus vannamei shrimp (LvYY1). This study shows that LvYY1 is ubiquitously expressed in shrimp tissues, and knockdown of LvYY1 expression by double-stranded RNA (dsRNA) injection in white spot syndrome virus (WSSV)-infected shrimp reduced both mRNA levels of the WSSV immediate early gene ie1 as well as overall copy numbers of the WSSV genome. The cumulative mortality rate of infected shrimp also declined with LvYY1 dsRNA injection. Using an insect cell model, we observed that LvYY1 activates ie1 expression, and a mutation introduced into the ie1 promoter subsequently repressed this capability. Moreover, reporter assay results suggested that LvYY1 is involved in basal transcriptional regulation via an interaction with L. vannamei TATA-binding protein (LvTBP). Electrophoretic mobility shift assay (EMSA) results further indicated that LvYY1 binds to a YY1-binding site in the region between positions -119 and -126 in the ie1 promoter. Chromatin immunoprecipitation analysis also confirmed that LvYY1 binds to the ie1 promoter in WSSV-infected shrimp. Taken together, these results indicate that WSSV uses host LvYY1 to enhance ie1 expression via a YY1-binding site and the TATA box in the ie1 promoter, thereby facilitating lytic activation and viral replication.IMPORTANCE WSSV has long been a scourge of the shrimp industry and remains a serious global threat. Thus, there is a pressing need to understand how the interactions between WSSV and its host drive infection, lytic development, pathogenesis, and mortality. Our successful cloning of L. vannamei YY1 (LvYY1) led to the elucidation of a critical virus-host interaction between LvYY1 and the WSSV immediate early gene ie1 We observed that LvYY1 regulates ie1 expression via a consensus YY1-binding site and TATA box. LvYY1 was also found to interact with L. vannamei TATA-binding protein (LvTBP), which may have an effect on basal transcription. Knockdown of LvYY1 expression inhibited ie1 transcription and subsequently reduced viral DNA replication and decreased cumulative mortality rates of WSSV-infected shrimp. These findings are expected to contribute to future studies involving WSSV-host interactions.


Assuntos
Regulação Viral da Expressão Gênica , Genes Precoces , Interações Hospedeiro-Patógeno , Penaeidae/virologia , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/fisiologia , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Clonagem Molecular , DNA Viral/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Virais , Insetos , Regiões Promotoras Genéticas , Ligação Proteica , Vírus da Síndrome da Mancha Branca 1/genética , Fator de Transcrição YY1/genética
9.
Dev Comp Immunol ; 46(2): 364-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24881625

RESUMO

Kruppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins, and act as important regulators with diverse roles in cell growth, proliferation, differentiation, apoptosis and tumorigenesis. Our previous research showed that PmKLF from Penaeus monodon is crucial for white spot syndrome virus (WSSV) infection, yet the mechanisms by which PmKLF influences WSSV infection remain unclear. This study cloned KLF from Litopenaeus vannamei (LvKLF), which had 93% similarity with PmKLF. LvKLF formed a dimer via the C-terminal zinc-finger motif. Knockdown of LvKLF expression by dsRNA injection in WSSV-challenged shrimps was found to significantly inhibit the transcription of two important immediate-early (IE) genes, IE1 and WSSV304, and also reduced WSSV copy numbers. Moreover, reporter assays revealed that the promoter activities of these two WSSV IE genes were substantially enhanced by LvKLF. Mutations introduced in the promoter sequences of IE1 and WSSV304 were shown to abolish LvKLF activation of promoter activities; and an electrophoretic mobility shift assay demonstrated that LvKLF binds to putative KLF-response elements (KRE) in the promoters. Taken together, these results indicate that LvKLF transcriptional regulation of key IE genes is critical to WSSV replication.


Assuntos
Proteínas de Artrópodes/fisiologia , Regulação Viral da Expressão Gênica , Genes Precoces , Genes Virais , Fatores de Transcrição Kruppel-Like/fisiologia , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Clonagem Molecular , Interações Hospedeiro-Patógeno , Penaeidae/virologia , Regiões Promotoras Genéticas , Ligação Proteica , Células Sf9 , Spodoptera , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/fisiologia
10.
Dev Comp Immunol ; 36(1): 121-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21740926

RESUMO

Sp1-like proteins and Kruppel-like factors (KLFs) are highly related zinc-finger proteins that have crucial roles in transcription. One expressed sequence tag (EST, HPA-N-S01-EST0038) from shrimps is homologous to Sp1. This study reports the cloning and characteristics of a KLF from shrimp, Penaeus monodon (PmKLF). The full-length PmKLF cDNA is 1702 bp, encoding a polypeptide of 360 amino acids. Sequence analysis revealed that the sequence of PmKLF is similar to that of KLF11 in humans, mice and zebrafish. RT-PCR analysis indicated that PmKLF mRNA is expressed in all examined tissues. Additionally, immunofluorescence analysis revealed that GFP-KLF fusion protein is located in the nucleus as dots in an insect cell line, Sf9. Localization of PmKLF in the nucleus is also observed in the hemolymph from white spot syndrome virus (WSSV)-infected and WSSV-uninfected Litopenaeus vannamei. Knockdown of the expression of PmKLF transcript in WSSV-infected shrimp resulted in delayed cumulative mortalities, suggesting that PmKLF is important to WSSV infection. Moreover, inhibition of PmKLF expression reduced the copy number of WSSV and ie1 expression, revealing that PmKLF affects WSSV infection via interfering with ie1 expression.


Assuntos
Infecções por Vírus de DNA/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Penaeidae , Fator de Transcrição Sp1/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Sequência de Bases , Proteínas de Ciclo Celular/genética , Linhagem Celular , Clonagem Molecular , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Regulação Viral da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Hemolinfa/imunologia , Hemolinfa/metabolismo , Humanos , Insetos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/imunologia , Camundongos , Dados de Sequência Molecular , Proteínas Repressoras/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus da Síndrome da Mancha Branca 1/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...